If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-18t+2=0
a = 15; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·15·2
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{51}}{2*15}=\frac{18-2\sqrt{51}}{30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{51}}{2*15}=\frac{18+2\sqrt{51}}{30} $
| 9n+1=n+10 | | 0=-0.05x^2+x+6 | | -5+w=-7 | | 18k=4K+6 | | -2.3d+3=11 | | 2s+7/9=3 | | 39+7y=60 | | j-344=158 | | 5x.6+34=9 | | 4x-22=110 | | j-177=522 | | 2.75m+3.25=13.70 | | 2x^2=x^2-36 | | 4(r+2.5)-6r=11.9 | | -1=-y.4-6 | | 82=r-202 | | 0.95y+2.25-0.05y=6.75 | | t-939=52 | | 5=6-3x | | 2(y+)-5=7 | | p-1=73 | | 10x=5+3x | | 4^x-1=8^3 | | -4x-79=89-12x | | 8^8x=16 | | f-4=6f+6 | | 3(7x+8=24 | | 338t=15 | | 1/7x+9=19 | | 5x+7=-58 | | 22+1.5h=11+2.75h | | -5x-37=-x+31 |